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Imaging Genetics Study Based on a Temporal
Group Sparse Regression and Additive Model

for Biomarker Detection of Alzheimer’s Disease
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Abstract— Imaging genetics is an effective tool used to
detect potential biomarkers of Alzheimer’s disease (AD) in
imaging and genetic data. Most existing imaging genet-
ics methods analyze the association between brain imag-
ing quantitative traits (QTs) and genetic data [e.g., single
nucleotide polymorphism (SNP)] by using a linear model,
ignoring correlations between a set of QTs and SNP groups,
and disregarding the varied associations between longi-
tudinal imaging QTs and SNPs. To solve these problems,
we propose a novel temporal group sparsity regression
and additive model (T-GSRAM) to identify associations
between longitudinal imaging QTs and SNPs for detection of
potential AD biomarkers. We first construct a nonparamet-
ric regression model to analyze the nonlinear association
between QTs and SNPs, which can accurately model the
complex influence of SNPs on QTs. We then use longitudinal
QTs to identify the trajectory of imaging genetic patterns
over time. Moreover, the SNP information of group and
individual levels are incorporated into the proposed method
to boost the power of biomarker detection. Finally, we pro-
pose an efficient algorithm to solve the whole T-GSRAM
model. We evaluated our method using simulation data
and real data obtained from AD neuroimaging initiative.
Experimental results show that our proposed method out-
performs several state-of-the-art methods in terms of the
receiver operating characteristic curves and area under the
curve. Moreover, the detection of AD-related genes and QTs
has been confirmed in previous studies, thereby further
verifying the effectiveness of our approach and helping
understand the genetic basis over time during disease
progression.

Index Terms— Imaging genetics, Alzheimer’s disease,
longitudinal imaging data, nonparametric regressionmodel,
magnetic resonance imaging, single nucleotide polymor-
phism.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is the most common type
of dementia that often affects individuals aged more

than 65 years [1]. The clinical manifestations of AD are
mainly memory impairment, cognitive decline, and behavior
disorder [2]. According to a recent study [1], the total number
of patients with AD worldwide is over 56 million. In 2050,
one person will develop AD in every 33 seconds, and the AD
population will increase to over 152 million [3]. Therefore,
understanding the cause and mechanism of disease progression
of AD is necessary and has gained wide attention in clinical
research.

AD risk is affected by genetic variants that an individual
carry [4]. Thus, understanding the genetic causes and mech-
anism of AD is important to achieve early prediction and
treatment of this disease [5]. Moreover, neuroimaging data can
be used to explore the relationships between genetic variants
and brain structures and functions [6], [7]. Research in this
emerging field, known as imaging genetics, is aimed at identi-
fying disease-related biomarkers by analyzing the associations
between genetic variants, such as single nucleotide polymor-
phisms (SNPs) and quantitative traits (QTs) of neuroimaging
data [8], [9] to reveal the genetic causes of AD [10].

During the last decade, numerous imaging genetics studies
have been conducted to identify the associations between
QTs and SNPs [5], [9], [11]–[14]. Early imaging genetic
studies are based on the mass-univariate linear model, which
uses pairwise univariate analysis to identify the relationships
between single QT and single SNP. However, the correlation
between QTs and SNPs is in fact a complex many to many
relationships, i.e., a set of SNPs is probably associated with
multiple QTs and a set of QTs is also probably related to
multiple SNPs [15]. Therefore, the traditional mass-univariate
linear model is insufficient to identify the complex associations
between SNPs and QTs. To address this problem, scholars
proposed the multivariate sparse regression model [16], [17].
For instance, Wang et al. [13] proposed a group sparse
multitask regression model to identify associations between
SNPs and QTs by using linkage disequilibrium (LD) block
and gene grouping to consider the combined effects of SNPs.
Zhu et al. [18] proposed a structured sparse low rank regres-
sion model, which can explicitly consider the correlations
within SNPs and QTs simultaneously for imaging genet-
ics study. Sparse canonical correlation analysis (SCCA) is
introduced to identify bi-multivariate associations between
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multiple SNPs and multiple QTs without pre-selecting candi-
date biomarkers [14], [19]. Although many efforts have been
made by constructing an association model to detect genetic
biomarkers, most of these methods are based on a linear
model, which may be inappropriate when the associations
between QTs and SNPs are nonlinear.

The sparse additive model (SpAM) combined with sparsity
constraint is widely used in imaging genetics study, where each
additive component is a smooth function of a single SNP [20].
Thus, the nonlinear effect of SNP can be incorporated into
the association model to obtain more accurate association
analysis between SNP and QT than the traditional linear
model [21]. However, most existing SpAM methods only use
QT at a single time point. QT changes continuously with
time and carries abundant time information when crossing
multiple time points. AD is a progressive neurodegenera-
tive disease that develops continuously over time [22]. For
instance, a normal control (NC) subject may gradually convert
to mild cognitive impairment (MCI) and finally deteriorate to
AD, whereas some patients with MCI may remain the same
or even revert to NC during this period. The structure and
function of the brain change rather than remain the same as
the state of the disease [9]. Therefore, longitudinal information
should be considered for accurate biomarker detection of
AD. To date, few methods have been established for imaging
genetics by using longitudinal information in SpAM method.
For instance, Marchetti-Bowick et al. [8] proposed a time
varying group sparse additive model (TV-GroupSpAM) to
identify associations between SNP and longitudinal QT. In the
TV-GroupSpAM, an l21 constrain is used to treat each SNP as
a group and each of three SNP genotypes (denoted as AA, Aa,
and aa) as a subgroup. Therefore, different and combinational
effects of three genotypes in an SNP on QTs at different
time points can be detected by using TV- GroupSpAM [8].
However, only a single QT was used in TV-GroupSpAM,
i.e., only correlations between hippocampus and multiple
SNPs were identified; extending this method to a set of
regions of interest (ROIs) in the brain is difficult because
it may elide associations between different ROIs and genetic
data. Moreover, group information among SNPs is ignored in
TV-GroupSpAM, which may weaken the power of biomarker
detection [23], [24].

Generally, the current imaging genetics methods face three
problems. First, the linear model is used to construct the
associations between QTs and SNPs, which is inappropri-
ate when these associations are nonlinear. Second, most of
these methods only apply QTs from a single time point
(e.g., the baseline visit), thereby missing various associations
between QTs and SNPs. Third, these methods consider either
each SNP or some SNPs as a group, which may ignore the
group or individual information of SNPs. To address these
problems, we propose a novel additive model called temporal
group sparsity regression and additive model (T-GSRAM),
to learn the bi-multivariate associations between longitudi-
nal QTs and SNPs simultaneously. Our contributions are as
follows. First, we incorporate brain imaging QTs at different
time points to determine various associations between SNPs

and QTs. Although longitudinal QT data are also used in
TV-GroupSpAM, only a single QT with different time points
is applied in this method, and extending this method to a set
of QTs is difficult as mentioned above. Given that different
atrophy rates are present across different brain regions in AD,
a common progressive pattern is shared among multiple time
points instead of all time points in many cases [9], [25].
These regional variations may be caused by the effects of
different SNPs at various time points [9]. Therefore, regional
variations at different time points and brain regions should be
considered in AD imaging genetics studies [9]. To investigate
regional variations at different time points, a fuse pairwise
group lasso [10] is used to select effective QTs at two adjacent
time points. Moreover, the l1 norm is applied to select effective
QTs at a specific time point, and the l21 norm is used to select
effective QTs at all time points and to detect variations across
different brain regions. Therefore, the trajectory of disease
progression represented by QTs can be captured by these
regularizations.

Second, inspired by TV-GroupSpAM, T-GSRAM uses the
l21 norm not only to select effective SNPs but also to
investigate the different and combinational effects of three
genotypes in an SNP on QTs at different time points. How-
ever, TV-GroupSpAM only considers single SNP information
and ignores group information for SNPs. Moreover, genetic
functionalities are usually controlled by multiple SNPs from
one gene, and the nonrandom association between alleles
at different loci can be described by LD [26]. Therefore,
the group l21 norm (G21 norm) is used to examine the
joint effect of SNPs in an inherent LD block [27] or
in gene.

Third, the proposed T-GSRAM is a nonparametric regres-
sion model where the effects of each SNP on QT are regarded
as a smooth function of time. This smooth function may work
with a specified parametric form (such as a polynomial of a
variable) or nonlinear transformation. Therefore, T-GSRAM
is more flexible than a linear method for analyzing the
complex associations between SNPs and QTs. To evaluate the
performance of T-GSRAM, we perform a set of experiments
on simulation data and real data obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [28]. The real data
include longitudinal magnetic resonance imaging (MRI) mea-
surements obtained over a 2-year period and 6452 SNPs from
202 genes. Results of the simulation data experiment show
that T-GSRAM can more accurately detect relevant biomark-
ers compared with four state-of-the-art methods. Meanwhile,
results of the real data experiments successfully detect some
AD-related risk genes. Therefore, T-GSRAM can be used for
the biomarker detection of AD.

The remainder of this paper is organized as follows.
Section two describes the proposed T-GSRAM method.
Moreover, an efficient algorithm is introduced to solve
the T-GSRAM. In section three, the performance of
T-GSRAM is evaluated by using simulation studies and a
real data analysis. In section four, a comprehensive dis-
cussion of the experimental results for the T-GSRAM is
presented.
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Fig. 1. Flowchart of the proposed T-GSRAM method.

II. METHOD

Fig. 1 presents the T-GSRAM flowchart. This method
comprises three main steps, namely, data preprocessing
for MRI imaging and SNP data, constructing associations
between SNPs and QTs by using T-GSRAM, and detecting
AD-associated biomarkers.

In this article, we define a matrix with boldface uppercase
letter, a vector with boldface lowercase letter, and a scalar
with normal italics. Specifically, let X ∈ R

n×p denotes the
SNP data, where n and p are sample number and feature
dimension of SNPs, respectively. An SNP takes a value of
0, 1, or 2, which indicate the number of minor alleles at the
corresponding chromosome location [20]. Let Yt ∈ R

n×q ;
t = 1, . . . , T denote QT data at time t , and Y ∈ R

n×q

denote QT data at baseline, where q and T are the feature
dimension of QT and number of time points, respectively. Y

and Yt is normalized. Moreover, we use ‖X‖F =
√∑

i ‖xi‖2
2

and ‖X‖2,1 = ∑
i

√∑
j x2

i j to denote the Frobenius norm and
l21 norm, respectively, where xi j is the element of the i -th row
and j -th column of matrix X, xi is the i -th row of X, and x j

is the j -th column of X.

A. Sparse Additive Model

The SpAM is a nonparametric setting model, and can be
formally defined as

min
f

1

2

∥∥∥∥∥∥Y −
p∑

j=1

f j
(
x j

)∥∥∥∥∥∥
2

2

+ λ

p∑
i=1

∣∣ f j
∣∣ s.t .

∥∥ f j
∥∥2

2 = 1

(1)

where f j (x j ) is the genetic effect of j -th SNP, and λ is regu-
larization parameter. A sparsity constraint is imposed in SpAM
to prevent overfitting because feature dimension is higher than
sample size (i.e., n � p). However, SpAM is a univariate
additive model that can only identify the association between

single SNP and QT. To address this problem, Yin et al. [29]
proposed a group sparse additive model (GroupSpAM), where
l21 penalty is added into the model to detect joint effects of
multiple SNPs. The formula for GroupSpAM is defined as

min
f

1

2

∥∥∥∥∥∥Y −
K∑

k=1

ck∑
j=1

fkj
(
xkj

)∥∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖ fk‖2 (2)

where K is the group number of SNPs. Although the asso-
ciations between SNPs and single QT can be identified in
GroupSpAM, the structures and functions of the brain changes
over time rather than remain stay the same. Thus, developing
longitudinal imaging genetics methods is of great impor-
tance. Marchetti-Bowick et al. [8] proposed a TV-GroupSpAM
method, which is a nonparametric regression model with a
group LASSO constraint over a given SNP and its correspond-
ing three genotypes. Moreover, longitudinal data were used
in TV-GroupSpAM to determine the different effects of three
genotypes in an SNPs. The TV-GroupSpAM is denoted as

min
f

1

2

T∑
t=1

∥∥∥∥∥∥Yt −
p∑

j=1

f j (t, x j )

∥∥∥∥∥∥
2

2

+ λ ‖ f ‖21 (3)

where f j (t, x j ) denotes the genetic effect of SNP x j at time t

and can be defined as f j (t, x j ) =
2∑

g=0
f g

j (t)x g
j , where f g

j (t) ∈{
f 0

j , f 1
j , f 2

j

}
denotes one of the three different SNP effects.

x j is a categorical variable and can be defined as xg
j = 1 ⇔

x j = g. Thus, different and combinational effects of three
genotypes in an SNP on QTs at different time points can be
detected using TV-GroupSpAM [8].

B. T-GSRAM

Although useful longitudinal information associated with an
SNP can be detected, regional variations in different brain
regions are ignored because only single QT is applied in
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TV-GroupSpAM. Moreover, group information among SNPs
is neglected in TV-GroupSpAM. The brain structures and
functions are affected by SNPs both conjointly at group level
and individually. Moreover, different temporal patterns can
be exhibited longitudinally in SNPs due to regional varia-
tions in cerebral decline of the human brain [30]. Therefore,
we propose a novel T-GSRAM method to analyze the complex
genetic effects on temporal patterns in imaging genetics

min
f,V

1

2

T∑
t=1

∥∥∥∥∥∥Yt Vt −
K∑

k=1

ck∑
j=1

2∑
g=0

f g
j (t)x g

j

∥∥∥∥∥∥
2

2

+ �( f ) + �(V)

s.t . ‖Yt Vt‖2
2 = 1‖ f ‖2

2 = 1 ∀t (4)

where SNPs are partitioned into K groups, which are genet-
ically linked; ck is the number of SNPs at k-th group [i.e.{

f j
}ck

j=1]. Moreover, V = [v1, v2, . . . , vT ] denotes the weights
of QTs.

1) Sparse Regularization of QT: Regional variations at dif-
ferent time points and different brain regions caused by disease
progression should be considered. Thus, three constraints for
QTs are incorporated into the proposed model to detect the
trajectory of the disease progression

�(V) = λv1 ‖V‖F P21
+ λv3

q∑
s=1

‖vs‖1 + λv2 ‖V‖21 (5)

where λv1, λv2 and λv3 are the control parameters of regular-
ization terms. First, the fuse pairwise l21 norm (FP21) [9, 31]
is defined as

‖V‖F P21
=

q∑
s=1

T −1∑
t=1

√
(vs

t )
2 + (vs

t+1)
2 (6)

This norm first applies the l2 norm to a single QT at two
adjacent time points and then uses the l1 norm for all QTs
across the whole brain. This norm can be applied to investigate
changes in QTs at two adjacent time points. Therefore, if a
QT remains unchanged at two adjacent time points, then the
QT is recognized as irrelevant of AD.

Second, norm ‖vs‖1 is defined as

∥∥vs
∥∥

1 =
T∑

t=1

∣∣vs
∣∣ (7)

The l1 norm aims to ensure the individual sparsity at a specific
time point.

Finally, the l21 norm is defined as

‖V‖21 =
q∑

s=1

√√√√ T∑
t=1

(vs
t )

2 (8)

This norm first applies the l2 norm to a single QT at all time
points, and then uses the l1 norm for all QTs across the whole
brain. Therefore, imaging QTs that remain stable across all
time points would be discarded.

2) Group and Individual Sparsity for SNP Regularization: The
genetic effects on the brain structure and function are usually
carried out conjointly at group level (a gene or a LD block)
and individually. Moreover, the different and combinational
effects of three genotypes in an SNP should be considered.
Therefore, a group sparsity penalty and an individual sparsity
penalty on SNPs are introduced into our model, and thus �( f )
can be defined as

�( f ) = λ f 1 ‖ f ‖G21
+ λ f 2 ‖ f ‖l21

(9)

where λ f 1 and λ f 2 are control parameters of the regularization
terms for the group and individual level, respectively. The
group sparse norm is defined as

‖ f ‖G21
=

K∑
k=1

√√√√ ck∑
j=1

2∑
g=0

T∑
t=1

( f g
j )2 (10)

The G21 norm defined in (10) enforces group-wise sparsity,
which indicates that SNPs at the group level will be selected
or unselected simultaneously [13]. However, certain features
could be irrelevant within a same group. Thus, we impose an
additional individual sparsity to SNPs via l21 norm regulariza-
tion [32], [33]. The l21 norm is defined as

‖ f ‖l21
=

p∑
j=1

√√√√ 2∑
g=0

T∑
t=1

( f g
j )2 (11)

The l21 norm emphasizes on a single variable sparsity and
could help identify a single SNP that plays a role in the
longitudinal QTs.

C. Optimization Algorithm

In the section, we describe an optimization algorithm for
minimizing (4) to gain optimal f and V. Directly optimiz-
ing (4) is difficult. Therefore, an alternative convex search
method is applied to optimize f and V [34]. First, we initialize
f as a random vector and V as a matrix with all one element.
Second, we first fix f to update V and then fix V to update
f until the algorithm converges.

1) Update V by Fixing f: When f is fixed, (4) can be rewritten
as

min
v

1

2

T∑
t=1

∥∥∥∥∥∥Yt Vt −
K∑

k=1

ck∑
j=1

2∑
g=0

f g
j (t)x g

j

∥∥∥∥∥∥
2

2

+λv1 ‖V‖F21
+ λv2 ‖V‖21 + λv3

q∑
s=1

‖vs‖1

s.t . ‖Yt Vt‖2
2 = 1 (12)

where (12) is a convex function. We first take the derivative
with respect to V and then set the derivative to be zero. We can
get the solution of V

vt = (λv1D + λv2D̃ + λv3D̄ + (1 + γvYT
t Yt ))

−1

×YT
t (

K∑
k=1

ck∑
j=1

2∑
g=0

f g
j x g

j ) (13)
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where D is a diagonal matrix, and 1
/√

(vs
t−1)

2 + (vs
t )

2 +
1
/√

(vs
t )

2 + (vs
t+1)

2 is the s-th diagonal element in D. D̃ and

D̄ are diagonal matrices, where 1
/‖vs‖2 and 1

/∣∣vs
t

∣∣ are the
s-th diagonal elements in D̃ and D̄, respectively.

2) Update f by Fixing V: When updating f by fixing V,
we can rewrite (4) as

min
f

1

2

T∑
t=1

∥∥∥∥∥∥Yt Vt −
K∑

k=1

ck∑
j=1

2∑
g=0

f g
j (t)x g

j

∥∥∥∥∥∥
2

2

+ λ f 1 ‖ f ‖G21

+λ f 2 ‖ f ‖l21

s.t . ‖ f ‖2
2 = 1 (14)

where (14) is a convex function, and we can use a block
coordinate descent algorithm [35] to solve it. (14) can be
solved using three steps. First, we take the derivative of (14)
with respect to fk . Second, we derivate the j -th variable of
the k-th group. Finally, we set the derivative to be zero and
normalize f j = f j

/∥∥ f j
∥∥

2 in the current iteration to obtain
the solution of f . The coordinate-wise solution of f for (14)
is defined as

f g
j = (1 + λ f 1D1 + λ f 2D̄1)

−1 E(R j

∣∣∣x g
j ) (15)

where R j = Yt Vt − ∑
k

∑
l �= j

2∑
g=0

f g
l x g

l is the partial residual

for f j . D1 is a norm of k-th group and can be represented
as 1

/‖ fk‖2, where 1 ≤ k ≤ K . D̄1 is also a norm for
j -th SNP of k-th group and can be denoted as 1

/∥∥ f j
∥∥

2.

E(R j

∣∣∣x g
j ) is a conditional expectation operator with respect

to R j . We first assume that E(· ∣∣x j ) is a smooth function
of x j and then introduce a smooth matrix Sg

j to replace the
conditional expectation operator [8]. Sg

j is defined as

Sg
j =

{
Kα

∣∣ta − tb
∣∣ xa

j = xb
j = g

0 otherwi se
(16)

where (a, b) is a pair of data points, each corresponding
to a particular individual j and time points t , and Kα is a
smooth kernel function with bandwidth α. Therefore, (15) can
be rewritten as

f g
j = (1 + λ f 1

1∥∥ f j
∥∥

2

+ λ f 2
1

‖ fk‖2
)−1Sg

j R j (17)

We use the alternative search algorithm to solve f and V,
respectively, which is described in Algorithm 1. Moreover,
the detailed convergence analysis is presented in the Supple-
mentary Materials.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we use simulations and a real example
to evaluate the finite-sample performance of T-GSRAM. The
code of T-GSRAM is available at the coding sharing site
(https://github.com/Meiyan88/T-GSRAM).

Algorithm 1 Algorithm for T-AGRAM

Input: SNP data X ∈ R
n×p , QT data Yt ∈ R

n×q , time
points t ∈ {1, . . . , T }. Initialize f g

j
for j = 1, . . . , p and g ∈ {0, 1, 2}, and parameters
λ f 1λ f 2λv1λv2λv3.

Output: f g
j ; j = 1, . . . , p, g = 0, 1, 2 and V ∈ R

q×T .
1. while not converge do
2. for k = 1, . . . , K do
3. Compute partial residual for k:

R̂k = YV − ∑
�=k

∑
j
∑

g f g
j x g

j ;

4. Estimate projected residuals: Pg
k = Sg

k R̂k ∀g

5. Compute group norm: ŵk =
√∑

j
∑

g

∥∥∥Pg
j

∥∥∥2

2
6. if ŵk ≤ λ f 1 + λ f 2 then set f g

k = 0 ∀g
7. else for j = 1, . . . , c
8. Compute partial residual for j : R̂k, j = R̂k + f j

9. Estimate projected residuals: Pg
j = Sg

j R̂k, j ∀g

10. Compute individual norm: ŵ j =
√∑

g

∥∥∥P̂g
j

∥∥∥2

2
11. if ŵ j ≤ λ f 1 then set f g

j = 0 ∀g.
12. else update f g

j ∀g by iterating until convergence:
f g

j = (1 + λ f 1
1‖ f j‖2

+ λ f 2
1

‖ fk‖2
)−1 Pg

j and scale

f g
j so that ‖ f ‖2

2 = 1
13. end if
14. end for
15. end if
16. end for
17. Update D, D̃, D̄
18. Solve vt alternatively according to (13) and scale vt

so that ‖Yt Vt‖2
2 = 1

19. end while

A. Simulation Studies
1) Simulation Setting: In this simulation study, we performed

several experiments on simulated data to illustrate the utility
of our method. We generated data according to the following
procedure. First, we simulated SNP data as follows. We used
LD blocks defined by the default method of Haploview and
PLINK to form SNP-sets. To calculate LD blocks, we sim-
ulated n subjects by randomly combining the haplotypes
of HapMap CEU subjects. We used PLINK to determine
LD blocks based on these subjects. We randomly selected
20 blocks and combined the haplotypes of HapMap CEU
subjects in each block to form genotype variables for these
subjects. We randomly selected 10 SNPs in each block, and
thus we had p = 200 SNPs for each subject. To fully evaluate
the influence of the different associations between QTs and
SNPs (linear or nonlinear association) on the performance
of different methods, we used the following three cases to
generate Y:

Case 1:

Yt Vt = XW + e (18)

Case 2:

Yt Vt = sin(X)W + e (19)
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Case 3:

Yt Vt =
p∑

j=1

2∑
g=0

f g
j (t)x g

j + e (20)

where e ∼ N(0, σ 2), t ∼Unif (0,1), and xg
j are the simulated

SNP data as described above. In Cases 1 and 2, we initially
randomly generated sparse matrices V ∈ R

q×t and W ∈ R
p×1

(i.e., the AD-related QTs or SNPs (causal QTs or SNPs)
were set to nonzero values, whereas the others were set to
zero). Afterward, we simulated Y by using (18) and (19),
respectively. In Case 3, we generated Y following the
additive model, and we initially built a set of realistic imaging
data (QTs) by randomly subsampling individuals obtained
from the ADNI dataset. Additional information on this ADNI
dataset can be found in the ADNI data analysis section.
We used MRI scans at the baseline visit (BL), 6 months
(M6), 12 months (M12), and 24 months (M24) to construct
longitudinal imaging data. For each time point, we used
93 ROIs extracted from MRI scans as QTs. We estimated
f g

j (t) by fitting (20) to real QTs. We randomly generated a
sparse matrix V ∈ R

q×t (i.e., the AD-related QTs were set
to nonzero values, whereas the others were set to zero) and
then chose A SNPs with the highest scores in the estimated
f g

j (t) as the causal SNPs, reserved the corresponding values
of the causal SNPs, and set the other values to zeros in
f g

j (t). We eventually calculated Y by using the above known
variables according to the model defined in (20). We built a
linear association between X and Y in Case 1 and a nonlinear
association between X and Y in Cases 2 and 3.

The T-GSRAM was evaluated with two nested
cross-validation loops (fivefold for each loop). Specifically,
for the external fivefold cross-validation, all subject samples
were divided into five subsets with the same proportion. For
each run, all samples within one subset were successively
chosen as the testing set, whereas the remaining samples
in the other four subsets were combined and used as the
training set for model training. The final results were reported
as the mean results from each run. Moreover, parameter
tuning was evaluated with the inner fivefold cross-validation
on the training set. In particular, the training set can be
further split into a training part and a validation part for
each run of the external fivefold cross-validation. By varying
the values of different parameters, the proposed model was
developed using the samples in the training part. The results
were obtained during validation. The parameters with the
optimized average result during validation were selected.
In the simulation studies, five parameters, i.e., λ f 1, λ f 2, λv1,
λv2, and λv3, should be determined, and root mean square
errors (RMSE) were used for parameter turning, i.e., the
parameters with the lowest mean RMSE would be selected,

RM SE =
√

1
5

5∑
i=1

T∑
t=1

(Yit Vit −
p∑

j=1
fi j )2. Moreover, these

parameters were in the range of
{
10−5, 10−4, . . . , 104, 105

}
.

During the experiments, the search algorithm will stop when
max j

∣∣∣ f iter+1
j − f iter

j

∣∣∣ ≤ ε and maxs
∣∣v iter+1

s − v iter
s

∣∣ ≤ ε

are satisfied, where ε is the tolerable error and set to 10−5

empirically.

To fully evaluate the performance of T-GSRAM, we con-
ducted five sets of experiments on simulated data. In the
first set of experiments, we aim to assess the influence of
different numbers of causal SNPs and different n values on
T-GSRAM. We applied this method on data generated from
Case 3. We initially fixed T , p, and n at 4, 200, and 100,
respectively. We then varied the number of the causal SNPs
over A ∈ {10, 20, 30} to assess the effects of different A on
the T-GSRAM. Second, we set T , p, and A to 4, 200, and
20, respectively. Then, we varied n from 100, 200, and 300 to
400 to evaluate the influence of different n on the T-GSRAM.
In the second set of experiments, we aim to investigate the
effectiveness of applying longitudinal QT data on T-GSRAM.
We initially fixed T , p, A, and n at 4, 200, 20, and 100,
respectively. Afterward, we generated BL and longitudinal
data by using the additive model in (20). In the third set
of experiments, we aim to assess the effectiveness of using
the group information of SNPs in T-GSRAM. We initially
fixed T , p, A, and n at 4, 200, 20, and 100 in T-GSRAM,
respectively. Afterward, we generated Y by using the additive
model in (20). We then used the following strategy to generate
SNP groups. First, the orders of all SNPs were randomly
disrupted. Second, based on the disrupted order, the SNPs
were grouped, and the group number and SNP number in each
group were the same as the original settings mentioned above.
After implementing this strategy, the generated SNP groups
were inconsistent with those groups having prior knowledge
(i.e., different from the original settings). In the fourth set
of experiments, we aim to evaluate the effectiveness of using
different regularizations in T-GSRAM. We initially fixed T ,
p, A, and n at 4, 200, 20, and 100 in T-GSRAM, respectively.
Afterward, we generated simulation data by using the additive
model in (20). We then removed one of the regularizations
at each time to investigate the influence of different reg-
ularizations on T-GSRAM. In the fifth set of experiments,
we initially fixed T , p, A, and n at 4, 200, 20, and 100 in T-
GSRAM, respectively, and then compared the performance of
this method with that of four state-of-art methods, namely,
SpAM [(1)] [20], GroupSpAM [(2)] [29], TV-GroupSpAM
[(3)] [8], and Temporal Mutil-task SCCA (T-MTSCCA) [9] on
three datasets generated by (18)–(20), respectively. The first
three methods have been introduced in the method section.
Moreover, T-MTSCCA is bi-multivariate regression model,
which imposes two types of regularization for SNP, i.e., one
considers the group level structural information within the
SNP data, and another one considers the sparsity among the
SNP groups. Moreover, longitudinal data were used in T-
MTSCCA. We also summarized the objective functions of
all the comparison method in Table I. For fair comparison,
we used the same procedures in the T-GSRAM to select
the optimal parameters of all compared methods listed in
Table I. Finally, we used the Receiver Operating Characteristic
(ROC) curves and area under the curve (AUC) to evaluate the
performance of all methods.

2) Simulation Results: In the first set of experiments, we ini-
tially tested different numbers of causal SNPs A from 10,
20, to 30 and varied our sample number n from 100 to
400 to evaluate the finite sample performance of T-GSRAM
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TABLE I
OBJECTIVE FUNCTION OF ALL COMPARED METHODS

in detecting causal SNPs in Case 3. Figs. S1 (a) and (b) show
the ROC curves corresponding to different A and n values,
respectively. Moreover, the AUC values of different A are
listed in Table SI. As predicted, a large A represents major
genetic effects and leads to a high probability of detecting
causal SNPs (Fig. S1 (a) and Table SI). Moreover, the true
positive rate increases with increased sample size, as shown
in Fig. S1 (b). As n increases, more potential knowledge of
data distribution can be learnt by the model; thus, the detection
AUC can be improved using large n.

In the second set of experiments, as shown in Fig. S2,
using longitudinal data has a better performance than using
BL data. Moreover, the detection AUCs of SNPs and QTs
for BL data are 0.72 and 0.41, respectively, whereas those
for longitudinal data are 0.81 and 1.0, respectively (the pair
t-test p-values are 0.005 and 5.9×10−5 for SNP AUC and QT
AUC, respectively). These results indicate that the longitudinal
data used in the proposed T-GSRAM may provide more
information than the BL data to improve biomarker detection
performance.

In the third set of experiments, the T-GSRAM with the
newly generated SNP groups obtained an AUC of 0.49, which
is much lower than that obtained by T-GSRAM with the
original SNP group setting (the pair t-test p-value is 0.0001 for
SNP AUC), thereby suggesting that having prior knowledge
of groups in SNP data is important to the T-GSRAM.

In the fourth set of experiment, Table II shows that the
AUC values of SNP detection slightly decrease when one of
the regularizations is removed. However, the AUC values of
QT detection obviously fluctuate, especially when the FP21
and l1 norms are removed.

In the fifth set of experiments, to evaluate its effectiveness,
we compare T-GSRAM with four state-of-art methods in
three cases. Fig. 2 and Table III show the ROC curves and
mean AUC of these methods, respectively. In detecting causal
SNPs, T-GSRAM outperforms the other methods (paired t-test

TABLE II
THE AUC OF REMOVED ONE OF THE REGULARIZATIONS

AT EACH TIME IN T-GSRAM

p-value < 0.05), thereby highlighting its flexibility in analyz-
ing the complex associations between SNPs and QTs. In Fig 2,
the results of T-MTSCCA for Case 1 (i.e., linear model)
are second only to those of T-GSRAM, but its results for
Cases 2 and 3 are the worst. Among the four SpAM-based
methods (i.e., SpAM, GroupSpAM, TV-GroupSpAM, and
T-GSRAM), TV-GroupSpAM and T-GSRAM use longitudi-
nal data and obtain higher AUC scores than the two other
methods, which only use imaging data from a single time
point. Compared with a linear method (e.g., T-MTSCCA),
SpAM-based methods are more flexible in analyzing the
nonlinear associations between SNPs and QTs. Therefore,
SpAM-based methods outperform T-MTSCCA in Cases 2
and 3. SpAM-based methods also show consistent perfor-
mance in the three cases, thereby highlighting their stability
in dealing with complex associations between SNPs and QTs.
SpAM, GroupSpAM, and TV-GroupSpAM use only a single
QT in detecting causal QTs. Therefore, we did not detect
any causal QT. Compared with T-MTSCCA, T-GSRAM has a
higher QT AUC value, thereby highlighting its effectiveness in
detecting potential biomarkers. We also calculated the compu-
tational time of these methods in Case 3 and present the results
in Table SII. Given that only one constraint is used for SNPs
in SpAM and TV-GroupSpAM, lower computational cost is
required in the two methods compared with that in the other
methods. Moreover, QTs and SNPs have more constraints in
T-MTSCCA; thus, the highest computational cost is needed
in this method. As shown in (2), sparsity constraint between
SNP groups rather than within an SNP group is considered in
GroupSpAM; smooth matrix on SNP groups is incorporated in
this method. Therefore, highest computation cost is observed
in GroupSpAM. The computational time of our approach is
medial among all methods to balance computational cost and
performance.

B. ADNI Analysis

1) Data Processing: In this article, the longitudinal brain
imaging data were obtained from the ADNI database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical com-
panies and nonprofit organizations, as a $60 million, 5 years
public private partnership. The primary goal of ADNI has
been to test whether serial MRI, positron emission tomog-
raphy (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the
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Fig. 2. ROC curves of the performance SNP detection of different methods (a) linear data generated by using (18), (b) nonlinear data generated
by using (19), (c) additive model data generated by using (20).

TABLE III
AUC OF DIFFERENT METHODS AND THEIR p-VALUES OF PAIRED t -TESTS COMPARING THE DIFFERENT METHODS WITH T-GSRAM

FOR SNPS. “–” IN THE TABLE INDICATES THAT ONLY SINGLE QT IS USED IN THE CORRESPONDING METHOD, NO CAUSAL

QT IS DETECTED, AND NO SELF OF PAIRED t -TEST IN T-GSRAM

progression of MCI and early AD. For up to date information,
see www.adni- info.org.

We considered the genotype variables of 818 subjects as
acquired by using the Human 610-Quad BeadChip (Illumina,
Inc., San Diego, CA, USA) in the ADNI database [36].
To reduce the population stratification effect, we selected
749 Caucasians from these subjects with complete imaging
measurements at BL. Our quality control procedures include
(i) call rate check per subject and SNP marker, (ii) gender
check, (iii) sibling pair identification, (iv) the Hardy–Weinberg
equilibrium test, (v) marker removal by the minor allele
frequency, and (vi) population stratification. The second line
preprocessing steps include removal of SNPs with (i) more
than 5% missing values, (ii) minor allele frequencies of below
5%, and (iii) Hardy–Weinberg equilibrium p-values of <10−6.
The remaining missing genotype variables were imputed as
the modal value. After implementing these procedures, only
708 of the 818 subjects remained, which was further reduced
to 404 after removing those subjects without MRI images for
all four time points.

Following the AlzGene database (www.alzgene.org, as of
4/18/2011), we selected two datasets, with the first dataset
including 6283 SNPs extracted from 191 AD candidate genes
(boundary: 20 KB) by using the ANNOVAR annotation
(http://www.openbioinformatics.org/annovar/), and the second
dataset including 1144 SNPs belonging to the top 36 AD genes
after implementing the standard quality control and imputation
procedures. We then combined these two datasets and obtained
a total of 6452 SNPs on 202 genes as our SNP data. We used
gene information to group our SNPs. The 202 genes and their
corresponding number of SNPs are listed in Table SVI in the
Supplementary Materials.

T1-weighted MRI images were used in this study. The
scanning parameters of 1.5T MRI images can be found in
a previous study [37]. A total of 404 subjects, including
140 NC, 181 MCI, and 83 AD subjects, provided by the ADNI
1 dataset were used. For each subject, the MRI scans at the BL,
M6, M12, M24 were used in this study when available. The
details of imaging data are listed in Table SIV. All MRI data
were processed under the following steps to extract ROI-based
features: (a) anterior commissure-posterior commissure cor-
rection by using MIPAV software (MIPAV in version 10.0,
https://mipav.cit.nih.gov/clickwrap.php); (b) image intensity
inhomogeneity correction by applying N3 algorithm [38];
(c) skull stripping [39] and warping a labeled template to each
skull-stripped image for the removal of the cerebellum (aBEAT
in version 1.0, http://www.nitrc.org/projects/abeat); (d) tissue
segmentation by using FAST method in FSL package to obtain
four tissues: gray matter (GM), white matter, ventricle, and
cerebrospinal fluid (FAST in FMRIB Software Library version
5.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/); (e) registering all
images to the Jacob template [40] by using the 4D-HAMMER
method proposed in a previous study [41] (HAMMER in
version 1.0, https://www.nitrc.org/projects/hammer/); (f) auto-
matically labeling 93 ROIs on the template [42] and projecting
ROI labels from the template image to each MRI image;
(g) computing the gray matter tissue volume of each ROI in a
labeled MRI image. In these processing steps, a feature vector
of 93 gray matter tissue volumes was obtained as QT for each
time point for subsequent analyses. Moreover, full and short
names of 93 ROIs are provided in Table SV in the Supple-
mentary Materials. In order to control for non-genetic effects,
we incorporated several static covariates into our model,
including intercept, gender, age, and whole brain volume.
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Fig. 3. Heatmaps of weights of top 10 imaging QTs selected by the proposed method. Four rows correspond to four time points of imaging QTs,
i.e. BL, M6, M12, and M24.

2) Results on Real Data: In this section, our goal is to
examine the genetic effect of each of the 6452 SNPs on the
QTs and detect some potential biomarkers associated with
AD. We are interested in identifying the brain regions (i.e.,
ROIs) that are most associated with the top selected SNPs
in the T-GSRAM method. We want to know the dynamic
patterns of imaging QTs longitudinally to identify the interior
behavior of disease progression. In real data, our parameter
turning strategy is consistent with that in the simulation data.
We averaged each vt across fivefold to ensure stable selection.
These averaged results at each time point (BL, M6, M12 and
M24) of top 10 imaging QTs with the highest absolute weights
V are shown in Fig. 3. We also visualized the top 10 imaging
QTs in Fig. 4. As shown in Fig. 3, the weights are sparse at
different time points and QTs and can be used to represent
the variations in the corresponding imaging QTs during the
disease progression trajectory. The degeneration of the puta-
men leads to a cognitive decline in AD [43]. The remarkable
metabolism reduction in the cingulate region at the right
hemisphere is associated with memory impairment, which is
a feature of early AD [44]. The parahippocampal gyrus is
associated with cognitive impairment in AD [45], its volume
atrophy is associated with healthy aging and different stages
of AD, and its volume sizes significantly differ across groups
in the following order: healthy > amnestic MCI >AD [46].
The middle frontal gyrus can affect metabolism and lead to
metabolic disorders and cognitive function decline in AD [47].
The high degree of neuroinflammation of the posterior limb
of the internal capsule is associated with some cognitive
deficits in early AD [48]. The posterior limb of the internal
capsule is associated with early AD [48]. The thalamus causes
episodic memory loss, which occurs during the early stages of
AD [49]. Moreover, the volume of thalamus decreases during
the progression of MCI to AD [50]. In sum, T-GSRAM can
help uncover those changes that take place during different
periods of MCI and AD progression.

We also identified the relevant top SNPs in T-GSRAM
study. Table SIII shows the weights of the selected top
20 SNPs. These SNPs are obtained from 10 genes, namely,
the APOE gene (e.g., rs429358 and rs405509), CLU gene
(e.g., rs2565050, rs2640727, rs4149246, and rs4149247),

Fig. 4. Top 10 imaging QTs from MRI data selected by T-GSRAM.

CD33 gene (e.g., rs8111536 and rs10424255), CR1 gene (e.g.,
rs2294938, rs6684558, rs1120599, rs12138784, rs10746420,
and rs11811428), ABCA7 gene (e.g., rs10416031), MS4A6A
gene (e.g., rs4939364), CD2AP gene (e.g., rs17217010),
BCAM gene (e.g., rs10402038), CELF2 (e.g., rs1324317),
and PICALM gene (e.g., rs7931249). These selected SNPs
show an increased risk of AD or MCI progression in previous
studies. For instance, APOE is identified in many AD-related
studies as one of the top 10 associated genes, indicating a
strong association between APOE and QTs in AD. Previous
evidence shows that APOE is highly correlated with the
atrophy patterns of the parahippocampal gyrus and the medial
temporal regions in AD [6], [51], [52]. CLU gene expression
shows a white matter integrity that may increase the risk
of AD [53]. CD33 inhibits the microglial uptake of amy-
loid beta, thereby greatly accelerating cognitive decline and
leading to early onset dementia [54]. CR1 is associated with
rapid cognitive decline in AD and an aging population [55].
Cognitive and memory decline, which is strongly associated
with AD, is affected by methylation at several CpG sites in
the ABCA7 gene [56]. Soluble trigger receptors expressed in
myeloid cells 2 in cerebrospinal fluid will affect the age of
AD onset and can be influenced by the NS4A6A gene [57].
CD2AP is reported to be associated with late onset AD [58].
PICALM may play an important role in AD pathology by
participating in altering synaptic vesicle cycling or APP endo-
cytosis [59]. In sum, the SNP selection results indicate that
T-GSRAM can identify effective SNPs.
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Fig. 5. Associations between top 10 SNPs and top 10 QTs, where nodes
denote SNPs or QTs and edges denote association strengths between
SNPs and QTs.

TABLE IV
RMSE OF DIFFERENT METHODS ON REAL DATA. “–” IN THE

TABLE INDICATES THAT A NON-p VALUE IS OBTAINED

To illustrate the complex associations between SNPs and
QTs, we first averaged the weights of SNPs and QTs. We then
selected the top 10 SNPs and QTs with the largest aver-
aged weights. Finally, we multiplied the weights of the top
10 SNPs by the weights of the top 10 QTs to obtain the
associations between the top 10 SNPs and QTs, and the results
are shown in Fig. 5. Both rs429358 and rs405590 (APOE)
have strong associations with putamen and parahippocampal
gyrus. Hashimoto et al. [60] found a significant interaction
between the ApoE e4 genotype and progressive morphological
changes (a more rapid reduction of volume is observed in
ApoE e4 carriers than in noncarriers) in the parahippocampal
gyrus. The remaining SNPs and QTs have been verified to be
associated with AD [44], [52], [61]–[63], and their associations
are worthy for further investigation and verification.

To evaluate its effectiveness, we compared the performance
of T-GSRAM on real data with that of four other state-of-
art methods. Given that the biomarkers associated with AD in
QTs and SNPs for real data have no ground truth, we used
RMSE in the performance evaluation. The results are shown
in Table IV. From this table, T-GSRAM obtains the lowest
RMSE, while the RMSE obtained by T-MTSCCA is lower
than that obtained by the other SpAM-based methods (except
for T-GSRAM).

IV. DISCUSSION
In this article, we propose a novel T-GSRAM method to

analyze the associations between SNPs and longitudinal QTs
to uncover the genetic basis of the brain structure, function,

and disorder associated with AD. In the proposed T-GSRAM
method, regression analysis was performed to select relevant
QTs and SNPs in AD. Different from traditional regression
methods that ignored useful information embedded in the
longitudinal imaging data across multiple time points, the
T-GSRAM incorporated longitudinal imaging data and applied
three constraints on the longitudinal imaging data for better
discovering potential information in the data. First, the inter-
mediate temporally stable pattern of one QT as well as the
sparsity among all QTs are considered by applying a FP21
norm on longitudinal QTs. Second, an l1 norm is applied to
select effective QTs at a specific time point. Third, an l21 norm
is used to select effective QTs at all time points to detect
regional variations in different brain regions. For the SNP
data, a G21 norm is applied to discovery group and individual
information in SNP groups. Moreover, an l21 norm is used in
our model to jointly select SNPs relevant to important imaging
QTs. Moreover, we assume that the effects of each SNP on
QT are regarded as a smooth function of time, and SNP effects
vary smoothly over time. Therefore, compared with a linear
method, the proposed T-GSRAM method is more flexible for
analysis of the complex associations between SNPs and QTs.

A. Effect of Parameters
To evaluate the effects of five parameters (i.e., λ f 1,

λ f 2, λv1, λv2, and λv3) on the performance of T-GSRAM,
we initially changed their values within the range of{
10−5, 10−4, . . . , 104, 105

}
, and then turned the optimal

parameters through grid search. However, we only varied one
parameter and fixed the other parameters at their optimal
values to display the mean AUC of SNP detection achieved
by T-GSRAM in the three data-generated cases. The results
are shown in Fig. S3. The AUC slightly fluctuates within
a small range along with an increasing λ f 1, λ f 2, λv1, λv2,
and λv3, thereby suggesting that the AUC values obtained
by T-GSRAM are generally stable with respect to these five
parameters. Following the same parameter turning strategy as
that used in T-GSRAM, the AUC values of SNP detection
obtained by all the other methods with varying parameters
can be obtained and shown in Figs. S4-S7. Fig. S4 shows
that the AUC values obtained by T-MTSCCA greatly fluctuate
within a small range along with an increasing λu1, λu2, and
λu3. Compared with those of T-MTSCCA, the AUC values
obtained by SpAM-based methods with different parameters
are more stable (Figs. S3-S7), thereby indicating that these
methods may be less influenced by different parameters.

B. Effect of Using Longitudinal QT Data
The ROC curves of T-GSRAM obtained by using longitu-

dinal and BL data are shown in Fig. S2. Using longitudinal
data shows a better performance than using BL data, thereby
highlighting the importance of using longitudinal QT data for
T-GSRAM. Table II shows that when longitudinal QT-related
regularizations are removed, the performance of T-GSRAM
remarkably decreases. For example, the FP21 norm is used to
select effective QTs at two adjacent time points to investigate
regional variations at different time points, whereas the l1 norm
is applied to select effective QTs at a specific time point. These
results indicate that the variations across brain regions and the
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disease progression trajectory in specific brain regions across
multiple time points are important and should be considered
when analyzing the associations between longitudinal QT and
SNP data.

C. Effect of Group Information of SNP
The SNP information at the group and individual levels is

considered in T-GSRAM. The group level information is based
on genes or LD blocks (constrained by G21), whereas the
individual level information is used to consider the different
and combinational effects of three genotypes in an SNP
(constrained by l21). When one of these two regularizations
are removed, the AUC values of SNP detection slightly
decrease, whereas the AUC values of QT detection remarkably
decrease (Table II). These results highlight the importance
of investigating the joint effects of SNPs in a group and
considering the different and combined effects in a single
SNP to accurately model the complex influence of SNPs on
QTs. Moreover, when the group information is inconsistent
with prior knowledge (i.e., different from the original settings),
the AUC value of SNP detection is only 0.49, which suggests
that having prior knowledge of groups in SNP data is important
to T-GSRAM.

D. Comparison With Previous Studies
We compared T-GSRAM with four state-of-the-art methods

on three sets of simulated data and a real ADNI 1 dataset.
For both causal QT and SNP detection, the detection AUC
value of T-GSRAM is higher than that of the other meth-
ods in three simulated datasets (linear or nonlinear model),
thereby indicating that T-GSRAM is more flexible than the
other methods in analyzing the complex associations between
SNPs and QTs. Fig. 2 and Table III show that T-MTSCCA
has a better performance in the linear model than in the
nonlinear model (the AUC values are 0.8, 0.61, and 0.55 in
cases 1, 2, and 3, respectively). Moreover, the AUC value
of T-MTSCCA is higher than that of SpAM-based methods
(except for T-GSRAM) in the linear model (Case 1). However,
SpAM-based methods obtain a higher AUC than the linear
model (e.g., T-MTSCCA) by using the smooth function in
Cases 2 and 3 (as shown in Figs. S1 (b) and (c)). Therefore,
T-MTSCCA is more suitable in the linear case than in the
nonlinear case, whereas the proposed T-GSRAM is more
flexible than T-MTSCCA and can be used in both linear
and nonlinear cases. As shown in Fig. 2 and Table III,
T-GSRAM and TV-GroupSpAM outperform both SpAM and
GroupSpAM, thereby highlighting the effectiveness of using
longitudinal imaging data. TV-GroupSpAM uses only a single
QT and ignores the group information of SNPs. By contrast,
T-GSRAM incorporates the group information of SNPs and the
different effects for three genotypes of single SNPs. Moreover,
T-GSRAM considers multiple QTs and QT variations over
different time points. Fig. 2 and Table III show that T-GSRAM
outperforms TV-GroupSpAM, thereby indicating that the vari-
able information among QTs and the group information of
SNPs are useful in biomarker detection. From Table SII, high-
est computation cost is observed in GroupSpAM. In addition
to the T-MTSCCA method, smooth matrix is introduced in the
solution of the SpAM-based method, SpAM and GroupSpAM

TABLE V
RMSE OF DIFFERENT METHODS ON REAL DATA PROCESSED

BY THE FREESURFER PIPELINE. “–” IN THE TABLE INDICATES

THAT A NON-p VALUE IS OBTAINED

introduce smooth matrix for SNPs, whereas TV-GroupSpAM
and our method introduce smooth matrix for time. Compared
with the smooth matrix for SNPs, the smooth matrix for time
is smaller and the amount of calculation is smaller. Moreover,
the smooth matrix used in GroupSpAM is for a group of SNPs,
which requires more calculation.

For the real ADNI dataset, T-GSRAM obtains the lowest
RMSE value, followed by T-MTSCCA. For these two meth-
ods, three constraints are included in the longitudinal QT data
(i.e., FP21, l1, and l21) to capture the trajectory of disease pro-
gression represented by QTs, which may partially account for
their low RMSE values. In contrast to T-MTSCCA, T-GSRAM
uses individual level information to take into consideration the
different and combinational effects of three genotypes in an
SNP, which may be conducive to further reducing the RMSE
value on the ADNI data in this study.

Publicly available ROI data processed by the FreeSurfer
pipeline, which can be downloaded from the ADNI website
(http://adni.loni.usc.edu/updated-cross-sectional-freesurfer-5-1
-data-available-8/), were used to investigate the influence of
different data preprocessing methods on T-GSRAM. Among
these data, we identified 761 subjects with MRI images at
BL. After implementing the quality control procedures for
SNP, 665 of these 761 subjects remained, which was further
reduced to 437 after removing those subjects without MRI
images for all four time points. Given that the biomarkers
associated with AD in QTs and SNPs for real data have no
ground truth, we used RMSE to evaluate the performance
of different methods on publicly available data. Table V
shows that the RMSE value of T-GSRAM is lower than that
obtained by the other methods. Similar results are obtained
from the ROI data processed by our pipeline (Table IV).
The top 10 SNPs and QTs selected by using the FreeSurfer
processed data are listed in Table SVII. The top 10 SNPs
were obtained from six genes, namely, APOE, PICLAM,
CR1, MS4A6A, CLU, and CD33, which were the same genes
selected by using our processed data (Table SIII). Among
the top 10 QTs, the hippocampus, cerebral cortex, lateral
ventricle, insula, supramarginal, and superior frontal are
closely related to AD [45], [64]–[68]. These results highlight
the effectiveness of T-GSRAM on data subjected to different
processing procedures.

E. Biomarker Detection

For the real imaging genetic data, the famous APOE
(e.g., rs429358, rs405509) is detected using the T-GSRAM.
This result may be attributed to the group information of
SNPs considered in the proposed method. Thus, the adjacent
SNPs, which are associated with AD, can be detected by
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the T-GSRAM. Moreover, our method detects brain regions
related to AD, such as hippocampal and fornix. Fig. 3 shows
that the sparsity of the QTs at each time point and the
sparsity of a QT at all time points. As shown in Fig. 3,
the weights of the parahippocampal gyrus at all time points are
consistently high probably due to the usage of the l21 norm in
selecting effective QTs at all time points. Moreover, the other
selected associated SNPs and ROIs are consistent with the
findings in the literature, thereby confirming the effectiveness
of our proposed method. Therefore, our proposed method can
identify potential AD-related biomarkers for early prediction
and diagnosis of AD and possibly can be extended to other
neuropsychological diseases.

F. Limitations and Future Work

Several issues should be addressed in our future
research. First, we only used small samples. The small sample
size may lead to the overfitting problem for various penalized
regression methods. Therefore, more samples should be used
in our experiments in future. Second, we ignore the func-
tional connectivity information among brain regions. However,
the brain network connections of different individuals reflect
the comprehensive characteristics of different brain systems.
Therefore, we will consider the association between brain
regions in future studies. Third, our method only analyzed
one modal imaging information. However, various character-
istics of image phenotypes can be obtained from different
neuroimaging modalities (e.g., functional MRI, structure MRI,
and diffusion tensor imaging). In the future, we will apply
multi-modal data combined with our research method to
obtain better results. Moreover, non-genetic effects, including
intercept, gender, age, and whole brain volume, are considered
in this study. However, other effects, such as multiple sites
and scanner vendor, are ignored in this study and should be
incorporated into methods proposed in future work to construct
a highly accurate association model.

We only used a specific atlas, which may limit the improve-
ments in biomarker detection performance because QTs are
extracted based on this atlas. However, we used another
publicly available dataset to assess the performance of T-
GSRAM. The lowest RMSE value is obtained by T-GSRAM,
thereby highlighting its flexibility in this dataset. Future studies
may consider using some other widely used atlases for brain
regions extraction [69], such as the automatic anatomical label-
ing atlas [42] and Craddock’s spatially constrained spectral
clustering atlas [70], to further investigate the influence of
different atlases on T-GSRAM.

In this study, some AD-related QT and SNP biomarkers are
detected by T-GSRAM. For example, the volume atrophy of
parahippocampal gyrus has a high risk of progressing from
MCI to AD [50], and may be used as a potential biomarker
for AD prediction. Moreover, to evaluate the effectiveness of
the detected biomarkers in AD prediction, we can use these
biomarkers as features to train a classifier for classifying MCI
subjects into MCI conversion (MCI subjects who will convert
to AD in 36 months) or MCI non-conversion (MCI subjects
who will not convert to AD in 36 months).
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